BulkLMM

Real-time Linear Mixed Model Applications for Association Mapping on Large Numbers of Quantitative Traits

Speaker: Zifan (Fred) Yu

Graduate Student of Data Science and Engineering

The Bredesen Center, UT Knoxville

The Department of Preventive Medicine, UT Health Science Center

We will discuss...

Our Design Goals of BulkLMM

Overview of Methods

Performance

Discussion

What is **BulkLMM**?

BulkLMM.jl is a *Julia* package to perform **fast** genome scans of **over large numbers of quantitative traits** using linear mixed models. It is available on GitHub at <u>https://github.com/senresearch/BulkLMM.jl</u>

Motivating data

BXD Longevity Study

of Individual Liver Proteome

Row	Sample	Strain	Strain_num	P42209_DESGLNRK_2	P42209_GLRPLDVAFLR_3
	String7	String7	Int64	Float64	Float64
1	H1009	BXD9	9	11.349	11.534
2	H0370	BXD9	9	11.249	12.735
3	H2577	BXD9	9	12.415	10.487
4	H0365	BXD9	9	11.374	10.674
5	H1333	BXD13	13	11.687	11.524
6	H2259	BXD24	24	11.837	11.715
7	H1792	BXD24	24	11.563	11.434
8	H1791	BXD24	24	12.5	12.273
9	H1541	BXD24	24	11.815	11.564
10	H1277	BXD24	24	12.674	11.743

Data information:

- 248 samples, 50 BxD strains
- 7321 measured genetic markers
- 32445 liver proteome

Overview of our methods

Statistical Framework

Standard Linear Mixed Model (LMM) - notation from Henderson (1984)

$$y = X_0 eta_0 + X_g eta_g + Z u + \epsilon \ ext{assume} \ u \sim N_{q imes 1}(0, \sigma_g^2 K_g), \ \ \epsilon \sim N_{n imes 1}(0, \sigma_e^2 I)$$

Notations:

 $y_{n imes 1}$ - a vector of a quantitative gene expression trait

 eta_g,eta_0 - fixed marker (eta_g) and non-marker effects (eta_0)

 $u_{q imes 1}$ - a vector of random polygenic effects with genetic variance σ_q^2

 $\epsilon_{n imes 1}$ - a vector of residual errors with unexplained variance σ_e^2

 X_0, X_g, Z are the design matrices for effects eta_0, eta_g, u

 K_g is the kinship matrix with element $k_{i,j}$ representing pairwise genetic relatedness

Statistical Framework

Linear Mixed Model (LMM):

In GWAS of a single marker, we apply the following linear mixed model to our data

$$egin{aligned} y &\sim N(X_0eta_0+X_geta_g,\sigma_g^2K+\sigma_e^2I)\ Var(y) &= \sigma_g^2K+\sigma_e^2I = \sigma_e^2(rac{h^2}{1-h^2}K+I)\ ext{where}\ h^2 &= rac{\sigma_g^2}{\sigma_g^2+\sigma_e^2} \end{aligned}$$

For each test, we would like to test the null $\beta_g = 0$, using the metric of LOD scores:

$$LOD = log_{10} \{ rac{L(Data|eta_g
eq 0)}{L(Data|eta_g = 0)} \}$$

Evaluating the LMM

- Decompose K as $K = U D U^T$
- Apply the transformation:

$$y^* = U^T y, \; X^* = U^T X$$

•
$$y^* \sim N(~X^*eta, \sigma_e^2(\delta D+I)$$
), $\delta = rac{h^2}{1-h^2}$

- For a given h^2 , we construct $W = [(\delta \lambda_i + 1)^{-1}]_{i=1}^n$
- Apply the transformation: $y^{\dagger}=Wy^{*},\ X^{\dagger}=WX^{*}$
- $y^{\dagger} \sim N(~X^{\dagger}eta,~\sigma_e^2 I~)$
- After getting the OLS solutions $\hat{eta}(h^2), \ \hat{\sigma}_e^2(h^2),$ plug them back in the log-likelihood
- Perform any numerical method to optimize $~l(y^{\dagger}|h^2)$ on h^2

Computational speed-up methods

Fast calculation of LOD scores

For simple linear regression...

As we could calculate R as...

Recall: Evaluating the LMM

- Decompose K as $K = UDU^T$
- Apply the transformation:

$$y^* = U^T y, \; X^* = U^T X$$

•
$$y^* \sim N(~X^*eta, \sigma_e^2(\delta D+I)$$
), $\delta = rac{h^2}{1-h^2}$

- For a given h^2 , we construct $W = [(\delta \lambda_i + 1)^{-1/2}]_{i=1}^n$
- Apply the transformation: $y^{\dagger} = Wy^{*}, \; X^{\dagger} = WX^{*}$
- $y^{\dagger} \sim N(~X^{\dagger}eta,~\sigma_e^2 I~)$
- After getting the OLS solutions $\hat{eta}(h^2), \ \hat{\sigma}_e^2(h^2),$ plug them back in the log-likelihood
- Perform any numerical method to optimize $\, l(y^\dagger|h^2)$ on h^2

Applying the trick to LMM

Step 2 - Weighted Regression

- For a given h^2 , we construct $W = [(\delta \lambda_i + 1)^{-1/2}]_{i=1}^n$
- Apply the transformation:

$$egin{array}{ll} y^{\dagger}=Wy^{*},\ X^{\dagger}=WX^{*} \ egin{array}{ll} y^{\dagger}\sim N(\ X^{\dagger}eta,\ \sigma^{2}I\) & \leftarrow \end{array}$$

Can be modeled as linear models

In order to get to the point of evaluating on the transformed y "dagger", **the key is to get the heritability estimate.**

Some important observations:

- 1. If we don't assume heritability differ by marker ("LMM-exact"), but **can estimate h2 once from the null model, then we can apply the same W to test all markers** ("LMM-null")
- 2. Moreover, suppose more than one traits have the same h2 estimated from null, we can group them as columns in a matrix, and use a common W to compute the LOD scores together...

Bulkscan-Null-Grid

Extended from the "LMM-null" simplification, we may further take the shortcut, by estimating the h2 under the null **using a grid-search approach.**

This has two benefits:

- We omitted the numerical optimization which may take longer to converge.
- More importantly, with a finite number of candidate values for the h2's for a large number of traits, **it is more likely that more than one traits will share the same heritability**

We can then group traits with the same h2 to calculate the LOD scores in one matrix multiplication!

Bulkscan-Null-Grid

Y = (y1, y2, y3, y4, y5, y6), and we used 3 candidate h2's on the grid [0.0, 0.5, 0.95]...

Results & Performance

QTL plot of trait Q972I8

Performance (compare with GEMMA)

Method	Runtime (s)	Error (from GEMMA)
Null-Exact	~ 110	0.0094
Null-Grid (h2-grid: 0.1 / 0.01)	~ 3.6 / 18	0.018 / 0.0096
Alt-Grid (h2-grid: 0.1 / 0.01)	~ 50 / 460	0.011 / 0.00097
GEMMA (Alt-Exact)	~ 70k	_/_

Details of the experiments:

- BXD Data: n = 248, p = 7321, **m = 32554**
- Environment: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz (24 cores); Julia 1.9.2 with 24 threads
- To compare with GEMMA, we run GEMMA iteratively on 1000 randomly selected traits and scale by m/1000
- Errors are based on mean absolute difference over the 7321 LOD scores for the 1000 selected traits

Performance (compare with GEMMA)

Method	Runtime (s)	Error (from GEMMA)
Null-Exact	Slow when n, p are large	Accurate when n is large
Null-Grid (h2-grid: 0.1 / 0.01)	Fastest	Accurate as n is large
Alt-Grid (h2-grid: 0.1 / 0.01)	Slow when p or h2-grid is large	Most accurate
GEMMA (Alt-Exact)	~ 70k	_/_

Details of the experiments:

- BXD Data: n = 248, p = 7321, **m = 32554**
- Environment: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz (24 cores); Julia 1.9.2 with 24 threads
- To compare with GEMMA, we run GEMMA iteratively on 1000 randomly selected traits and scale by m/1000
- Errors are based on mean absolute difference over the 7321 LOD scores for the 1000 selected traits

Discussion

Discussions

Strengths:

- BulkLMM is **fast** for scanning **a large number of traits** without losing too much accuracy
- Integration in Julia:
 - Easy to code, intuitive syntax
 - Flexible (CPU configuration, multi-dispatch)
- Great for downstream manipulation and analysis

Other Features:

- Efficient permutation testing framework
- MAP optimization of h2 when including conjugate prior on residual variances
- Weighted residual variances

Discussions

Limitations:

- The key improvement in runtime relies on doing **1-df tests**
- Nature of **large m**, **low sample size n** (hard to measure many traits on a lot of individuals)
- Accurate methods may require large memory when data size is large
- Can not deal with more than two variance components (more than one sources of the random effects)

Future steps:

- Command line version, integration to other languages
- Applications for studying strain means v.s. individual measurements
- Publishing the paper

Acknowledgements

Senresearch group:

Śaunak Sen - Principal Investigator of the project, ground work, primary guidance

Gregory Farage - Main co-author, code review and refinement, package development, front-end integration

Harper Kolehmainen - Intern of summer 2023, front-end integration and downstream analysis

Special Thanks to:

GN group: for providing and assisting with accessibility to data, use of GEMMA

Robert W. Williams (UTHSC), Karl Broman (UW-Madison)

Thank you for listening

References:

- Chelsea Trotter, Hyeonju Kim, Gregory Farage, Pjotr Prins, Robert W Williams, Karl W Broman, Saunak Sen, Speeding up eQTL scans in the BXD population using GPUs, G3 Genes|Genomes|Genetics, Volume 11, Issue 12, December 2021, jkab254, https://doi.org/10.1093/g3journal/jkab254
- Lippert, Christoph, et al. "FaST Linear Mixed Models for Genome-Wide Association Studies." *Nature Methods*, vol. 8, no. 10, 4 Sept. 2011, pp. 833–835, https://doi.org/10.1038/nmeth.1681. Accessed 3 June 2021.
- 3. Runcie, Daniel E., and Lorin Crawford. "Fast and Flexible Linear Mixed Models for Genome-Wide Genetics." *PLOS Genetics*, vol. 15, no. 2, 8 Feb. 2019, p. e1007978, https://doi.org/10.1371/journal.pgen.1007978. Accessed 12 Nov. 2019.
- 4. Xiang Zhou and Matthew Stephens (2012). Genome-wide efficient mixed-model analysis for association studies. *Nature Genetics* 44, 821–824.
- 5. Zhang, Z., Ersoz, E., Lai, CQ. *et al.* Mixed linear model approach adapted for genome-wide association studies. *Nat Genet* 42, 355–360 (2010). https://doi.org/10.1038/ng.546

Interested in exploring more?

Further questions or comments?

- > Please report to *Issues* on the GitHub page
- > Contact the author (me): <u>zyu20@uthsc.edu</u> or on GitHub (id: learningMalanya)

Backup slides start here...

- What is a kinship matrix?
- Permutation testing framework
- Details about Bulkscan methods and demonstrations
- Weighted residual variances structure
- Bayesian posterior mode estimation formula

Our design goals

- Why Linear Mixed Models?
 - Interpretable modeling of family structure (kinship matrix)

- Easy to code;
- Runs fast;
- Other features: multiple dispatch, multi-processing...

Compared to existing software (e.g., GEMMA, R/qtl), our program is designed to give the user a quick overview of the association tests of **many traits**.

Bulkscan-Null-Exact

Y = (y1, y2, y3, y4, y5, y6), for "Null-Exact" bulkscan method we process each trait independently, with each iteration doing:

Step 1: estimate h2 from null model, construct W and transform data to get y†', X†;

Step 2: apply the matrix operation, taking the left matrix as just one trait (vector)

To speed up Null-Exact, we parallelize the processes to have them run concurrently.

Bulkscan-Alt-Grid

But, can we apply some shortcuts in evaluating "LMM-Exact" - meaning that **to also** estimate the heritability independently for each marker?

Yes! Notice that:

• For a given h2, we can compute the "LOD scores" for multiple traits and markers using the matrix multiplication scheme:

while they are **not technically the LOD scores under linear mixed models**, it still allows us to compute

 $L(h_k^2) = [l_1(h_k^2) - l_0(h_k^2)]/log(10)$

for every pair of traits and markers.

• We can then use $l_1(h_k^2) = log(10) * L(h_k^2) + l_0(h_k^2)$ for optimization of loglikelihood of alternative model on h2

Bulkscan-Alt-Grid

For a given h2-grid, and for each value h2 in the h2-grid, we do:

What is wrong here?

• Estimated loglik of the **null model** is larger than that of the **alt. Model**

Why will this occur?

- Heritability of 1 blows up the likelihood
- It suggests environmental variance << genetic variance

How can we deal with this issue?

 Imposing a prior belief that environmental variance can't be too small

MAP estimate of
$$p(\sigma_e^2|y^{\dagger}, v_0, \tau_0^2) = \text{Scaled-Inv-}\chi^2(v_n, \tau_n^2)$$
:
 $v_n = n + v_0, \ \tau_n^2 = \frac{n}{n+v_0}s^2 + \frac{v_0}{n+v_0}\tau_0^2$
 $s^2 = (y^{\dagger} - X^{\dagger}\beta)^T(y^{\dagger} - X^{\dagger}\beta)/n$

$$\hat{\sigma}_e^2 = rac{v_n au_n^2}{v_n + 2} = rac{n s^2 + v_0 au_0^2}{n_0 + v_0 + 2}$$

Objective function (posteriori) under MAP estimates:

$$p(\sigma_e^2|y^\dagger,v_0, au_0^2) = ext{Scaled-Inv-}\chi^2(v_n, au_n^2)$$
 (1)

$$\propto (\sigma_e^2)^{-(rac{v_n}{2}+1)} exp\{-rac{v_n au_n^2}{2\sigma_e^2}\}$$
 (2)

$$=exp\{-rac{n+v+2}{2}log(\sigma_{e}^{2})-rac{ns^{2}+v_{0} au_{0}^{2}}{2\sigma_{e}^{2}}\}$$
 (3)

ll = -0.5 * ((n+prior_df)*log.(sigma2_e) .- sum(log,w) .+ (rss0.+prior[1]*prior[2])./sigma2_e)

Posterior: with prior Scaled-Inv-Chisq(0.1, 1.0)

Normal likelihood

Expression QTL (eQTL) Plot

