BulkLMM

Real-time Linear Mixed Model Applications for Association Mapping on Large Numbers of Quantitative Traits

Speaker: Zifan (Fred) Yu

Graduate Student of Data Science and Engineering

The Bredesen Center, UT Knoxville

The Department of Preventive Medicine, UT Health Science Center

We will discuss…

■ **Our Design Goals of BulkLMM**

- **■ Overview of Methods**
- **■ Performance**
- **■ Discussion**

What is BulkLMM?

BulkLMM.jl is a *Julia* package to perform **fast** genome scans of **over large numbers of quantitative traits** using linear mixed models. It is available on GitHub at https://github.com/senresearch/BulkLMM.jl

Motivating data

BXD Longevity Study

of Individual Liver Proteome

Data information:

- 248 samples, 50 BxD strains
- 7321 measured genetic markers
- **32445** liver proteome

Overview of our methods

Statistical Framework

Standard Linear Mixed Model (LMM) - notation from Henderson (1984)

$$
y = X_0 \beta_0 + X_g \beta_g + Z u + \epsilon
$$
 assume
$$
u \sim N_{q \times 1}(0, \sigma_g^2 K_g),~~\epsilon \sim N_{n \times 1}(0, \sigma_e^2 I)
$$

Notations:

 $y_{n\times 1}$ - a vector of a quantitative gene expression trait

 β_q, β_0 - fixed marker (β_q) and non-marker effects (β_0)

 $u_{q\times 1}$ - a vector of random polygenic effects with genetic variance σ_q^2

 $\epsilon_{n\times 1}$ - a vector of residual errors with unexplained variance σ_{e}^{2}

 X_0, X_q, Z are the design matrices for effects β_0, β_q, u

 K_q is the kinship matrix with element $k_{i,j}$ representing pairwise genetic relatedness

Statistical Framework

Linear Mixed Model (LMM):

In GWAS of a single marker, we apply the following linear mixed model to our data

$$
y \sim N(X_0 \beta_0 + X_g \beta_g, \sigma_g^2 K + \sigma_e^2 I)
$$

$$
Var(y) = \sigma_g^2 K + \sigma_e^2 I = \sigma_e^2 (\frac{h^2}{1 - h^2} K + I)
$$

$$
\text{where } h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}
$$

For each test, we would like to test the null $\beta_q=0$, using the metric of LOD scores:

$$
LOD = log_{10}\{\frac{L(Data|\beta_g \neq 0)}{L(Data|\beta_g = 0)}\}
$$

Evaluating the LMM

- Decompose K as $K = UDU^{T}$
- Apply the transformation: \bullet

$$
y^* = U^T y, \; X^* = U^T X
$$

•
$$
y^* \sim N(X^*\beta, \sigma_e^2(\delta D + I))
$$
, $\delta = \frac{h^2}{1-h^2}$

- For a given h^2 , we construct $W=[(\delta \lambda_i+1)^{-1}]_{i=1}^n$
- Apply the transformation: $y^\dagger = Wy^*, \; X^\dagger = W X^*$
- $y^{\dagger} \sim N(\; X^{\dagger} \beta, \; \sigma_e^2 I \;)$
- After getting the OLS solutions $\hat{\beta}(h^2)$, $\hat{\sigma}_e^2(h^2)$, plug them back in the log-likelihood
- Perform any numerical method to optimize $l(y^\dagger|h^2)$ on h^2

Computational speed-up methods

Fast calculation of LOD scores

For simple linear regression…

As we could calculate R as…

Recall: Evaluating the LMM

- Decompose K as $K = UDU^{T}$
- Apply the transformation:

$$
y^*=U^Ty,\;X^*=U^TX
$$

•
$$
y^* \sim N(X^*\beta, \sigma_e^2(\delta D + I))
$$
, $\delta = \frac{h^2}{1-h^2}$

- For a given h^2 , we construct $W=[(\delta\lambda_i+1)^{-1/2}]_{i=1}^n$
- Apply the transformation: $y^{\dagger} = Wy^*,~X^{\dagger} = WX^*$
- $y^{\dagger} \sim N(\; X^{\dagger} \beta, \; \sigma_e^2 I \;)$
- After getting the OLS solutions $\hat{\beta}(h^2)$, $\hat{\sigma}_e^2(h^2)$, plug them back in the log-likelihood
- Perform any numerical method to optimize $l(y^\dagger|h^2)$ on h^2

Applying the trick to LMM

Step 2 - Weighted Regression

- For a given h^2 , we construct $W=[(\delta\lambda_i+1)^{-1/2}]_{i=1}^n$
- Apply the transformation:

$$
y^{\dagger} = Wy^*, \ X^{\dagger} = W X^*
$$

$$
y^{\dagger} \sim N(X^{\dagger} \beta, \ \sigma^2 I) \longleftarrow
$$

Can be modeled as linear models

In order to get to the point of evaluating on the transformed y "dagger", **the key is to get the heritability estimate.**

Some important observations:

- 1. If we don't assume heritability differ by marker ("LMM-exact"), but **can estimate h2 once from the null model, then we can apply the same W to test all markers** ("LMM-null")
- 2. Moreover, suppose more than one traits **have the same h2 estimated from null, we can group them as columns in a matrix, and use a common W** to compute the LOD scores together…

Bulkscan-Null-Grid

Extended from the "LMM-null" simplification, we may further take the shortcut, by estimating the h2 under the null **using a grid-search approach.**

This has two benefits:

- We omitted the numerical optimization which may take longer to converge.
- More importantly, with a finite number of candidate values for the h2's for a large number of traits, **it is more likely that more than one traits will share the same heritability**

We can then group traits with the same h2 to calculate the LOD scores in one matrix multiplication!

Bulkscan-Null-Grid

Y = (y1, y2, y3, y4, y5, y6), and we used 3 candidate h2's on the grid **[0.0, 0.5, 0.95]...**

HEALTH SCIENCE CENTER. \blacksquare

Results & Performance

QTL plot of trait Q97218

HEALTH SCIENCE CENTER. \blacksquare

HEALTH SCIENCE CENTER. \blacksquare

Performance (compare with GEMMA)

Details of the experiments:

- BXD Data: n = 248, p = 7321, **m = 32554**
- Environment: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz (24 cores); Julia 1.9.2 with 24 threads
- To compare with GEMMA, we run GEMMA iteratively on 1000 randomly selected traits and scale by m/1000
- Errors are based on mean absolute difference over the 7321 LOD scores for the 1000 selected traits

Performance (compare with GEMMA)

Details of the experiments:

- BXD Data: n = 248, p = 7321, **m = 32554**
- Environment: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz (24 cores); Julia 1.9.2 with 24 threads
- To compare with GEMMA, we run GEMMA iteratively on 1000 randomly selected traits and scale by m/1000
- Errors are based on mean absolute difference over the 7321 LOD scores for the 1000 selected traits

Discussion

Discussions

Strengths:

- BulkLMM is **fast** for scanning **a large number of traits** without losing too much accuracy
- Integration in Julia:
	- Easy to code, intuitive syntax
	- Flexible (CPU configuration, multi-dispatch)
- Great for downstream manipulation and analysis

Other Features:

- Efficient permutation testing framework
- MAP optimization of h2 when including conjugate prior on residual variances
- Weighted residual variances

Discussions

Limitations:

- The key improvement in runtime relies on doing **1-df tests**
- Nature of **large m**, **low sample size n** (hard to measure many traits on a lot of individuals)
- Accurate methods may require large memory when data size is large
- Can not deal with more than two variance components (more than one sources of the random effects)

Future steps:

- Command line version, integration to other languages
- Applications for studying strain means v.s. individual measurements
- Publishing the paper

Acknowledgements

Senresearch group:

[Śaunak Sen](http://www.senresearch.org/) - Principal Investigator of the project, ground work, primary guidance

Gregory Farage - Main co-author, code review and refinement, package development, front-end integration

Harper Kolehmainen - Intern of summer 2023, front-end integration and downstream analysis

Special Thanks to:

GN group: for providing and assisting with accessibility to data, use of GEMMA

Robert W. Williams (UTHSC), Karl Broman (UW-Madison)

you for listening I hank

References:

- 1. Chelsea Trotter, Hyeonju Kim, Gregory Farage, Pjotr Prins, Robert W Williams, Karl W Broman, Śaunak Sen, Speeding up eQTL scans in the BXD population using GPUs, *G3 Genes|Genomes|Genetics*, Volume 11, Issue 12, December 2021, jkab254, <https://doi.org/10.1093/g3journal/jkab254>
- 2. Lippert, Christoph, et al. "FaST Linear Mixed Models for Genome-Wide Association Studies." *Nature Methods*, vol. 8, no. 10, 4 Sept. 2011, pp. 833–835, https://doi.org/10.1038/nmeth.1681. Accessed 3 June 2021.
- 3. Runcie, Daniel E., and Lorin Crawford. "Fast and Flexible Linear Mixed Models for Genome-Wide Genetics." *PLOS Genetics*, vol. 15, no. 2, 8 Feb. 2019, p. e1007978, https://doi.org/10.1371/journal.pgen.1007978. Accessed 12 Nov. 2019.
- 4. Xiang Zhou and Matthew Stephens (2012). [Genome-wide efficient mixed-model analysis for](http://doi.org/10.1038/ng.2310) [association studies.](http://doi.org/10.1038/ng.2310) *Nature Genetics* 44, 821–824.
- 5. Zhang, Z., Ersoz, E., Lai, CQ. *et al.* Mixed linear model approach adapted for genome-wide association studies. *Nat Genet* 42, 355–360 (2010). https://doi.org/10.1038/ng.546

Interested in exploring more?

Further questions or comments?

- ➢ Please report to *Issues* on the GitHub page
- \triangleright Contact the author (me): z yu20@uthsc.edu or on GitHub (id: learningMalanya)

Appendix:

Backup slides start here…

- **- What is a kinship matrix?**
- **- Permutation testing framework**
- **- Details about Bulkscan methods and demonstrations**
- **- Weighted residual variances structure**
- **- [Bayesian posterior mode estimation formula](#page-35-0)**

Our design goals

- **• Why Linear Mixed Models ?**
	- Interpretable modeling of family structure (kinship matrix)

- Easy to code;
- Runs fast;
- Other features: multiple dispatch, multi-processing…

Compared to existing software (e.g., GEMMA, R/qtl), our program is designed to give the user a quick overview of the association tests of **many traits**.

Bulkscan-Null-Exact

Y = (y1, y2, y3, y4, y5, y6), for "Null-Exact" bulkscan method we process each trait independently, with each iteration doing:

Step 1: estimate h2 from null model, construct W and transform data to get **y†', X†;**

Step 2: apply the matrix operation, taking the left matrix **as just one trait (vector)**

To speed up Null-Exact, we parallelize the processes to have them run concurrently.

Bulkscan-Alt-Grid

But, can we apply some shortcuts in evaluating "LMM-Exact" - meaning that **to also estimate the heritability independently for each marker**?

Yes! Notice that:

For a given h2, we can compute the "LOD scores" for multiple traits and markers using the matrix multiplication scheme:

while they are **not technically the LOD scores under linear mixed models**, it still allows us to compute

 $L(h_k^2) = [l_1(h_k^2) - l_0(h_k^2)]/log(10)$

for every pair of traits and markers.

We can then use $l_1(h_k^2) = log(10) * L(h_k^2) + l_0(h_k^2)$ for optimization of loglikelihood of alternative model on h2

Bulkscan-Alt-Grid

For a given h2-grid, and for each value h2 in the h2-grid, we do:

 \overline{a}

HEALTH SCIENCE CENTER. \blacksquare

HEALTH SCIENCE CENTER. \blacksquare

What is wrong here?

● Estimated loglik of the **null model** is larger than that of the **alt. Model**

Why will this occur?

- **Heritability of 1** blows up the likelihood
- It suggests **environmental variance << genetic variance**

How can we deal with this issue?

Imposing a prior belief that environmental variance **can't be too small**

MAP estimate of
$$
p(\sigma_e^2|y^\dagger, v_0, \tau_0^2) = \text{Scaled-Inv-}\chi^2(v_n, \tau_n^2):
$$
\n
$$
v_n = n + v_0, \ \tau_n^2 = \frac{n}{n + v_0} s^2 + \frac{v_0}{n + v_0} \tau_0^2
$$
\n
$$
s^2 = (y^\dagger - X^\dagger \beta)^T (y^\dagger - X^\dagger \beta) / n
$$

$$
\hat{\sigma}_e^2 = \frac{v_n \tau_n^2}{v_n + 2} = \frac{n s^2 + v_0 \tau_0^2}{n_0 + v_0 + 2}
$$

Objective function (posteriori) under MAP estimates:

$$
p(\sigma_e^2|y^\dagger, v_0, \tau_0^2) = \text{Scaled-Inv-}\chi^2(v_n, \tau_n^2)
$$
 (1)

$$
\propto (\sigma_e^2)^{-(\frac{v_n}{2}+1)} exp{-\frac{v_n \tau_n^2}{2\sigma_e^2}}
$$
 (2)

$$
= exp\{-\frac{n+v+2}{2}log(\sigma_e^2) - \frac{ns^2 + v_0\tau_0^2}{2\sigma_e^2}\}\qquad \qquad (3)
$$

 $11 = -0.5 * ((n+prior_df)*log.(sigma2_e) -- sum(log,w) + (rss0.+prior[1]*prior[2])./sigma2_e)$

Normal likelihood Posterior: with prior Scaled-Inv-Chisq(0.1, 1.0)

Expression QTL (eQTL) Plot

